Интегралы и их приложения


Дифференциальное исчисление функций одной переменной. Понятие функции, дифференцируемой в точке. Дифференциал функции, его геометрический смысл Производная функции, ее смысл в различных задачах. Правила нахождения производной и дифференциала

Непрерывные функции

Непрерывность функции в точке

Пусть f:E R, a -точка области определения.

Определение 21 (непрерывность функции в точке). Функция
f(x) называется непрерывной в точке a, если

 U(f(a))  U(a) (f(U(a)) U(f(a))).

Дадим определение непрерывной функции в точке на "языке – " (ср. с определением предела по Коши.)

Определение 22 (непрерывность функции по Коши). Функция f(x) называется непрерывной в точке a, если  > 0 ()>0:  x удовлетворяющих условию |x-a|< , выполнено неравенство
|f(x)-f(a)|< 

Замечание. Если a – изолированная точка множества E, то есть точка, что в некоторой окрестности этой точки нет других точек множества E, кроме точки a, то U(a) = a. Следовательно, f(U(a)) = f(a) U(f(a)),  U(f(a)). Таким образом, в любой изолированной точке функция непрерывна. Поэтому содержательная часть понятия непрерывности относится к случаю, когда a- предельная точка множества E. Двойные интегралы в прямоугольной области Пусть область интегрирования R представляет собой прямоугольник .

Из определения непрерывной функции следует, что

f:E R непрерывна в a E, где a- предельная точка E
 limx af(x) = f(a)

Последнее равенство можно переписать в следующей форме

limx af(x) = f(limx ax),

которое говорит о том, что непрерывные в точке функции перестановочны с операцией предельного перехода.

Приведем еще одно определение непрерывной функции.

Определение 23 (непрерывность "на языке приращений").
Функция называется непрерывной в точке a, если выполнено условие

lim x 0 y = 0,

где  y = f(a+ x)-f(a).

Пример 20. Функция f(x) = sin x непрерывна на R. Действительно,

|sin x-sin a| = 2|cos((x+a)/2)sin ((x-a)/2)| 2|sin((x-a)/2)|
 |x-a|/2 = |x-a|<,

как только |x-a|<.

Пример 21. Любая последовательность f:N R есть функция, непрерывная на множестве N, так как каждая точка множества N является его изолированной точкой.

Точки разрыва

Пример 22. Исследовать на непрерывность

f(x) =

 x+1, если x 0

 x-1, если x<0.

(рис. 17)

По графику видно, что функция не является непрерывной в точке x = 0. Существуют односторонние пределы функции справа и слева в точке x = 0, которые не равны limx -0f(x) = -1 и limx +0f(x) = 1. То есть определение непрерывной функции в точке не выполнено и точка x = 0 - точка разрыва функции.

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Вид частных решений, характеристическое уравнение (×)

 ЛОДУ с постоянными коэффициентами

у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = 0, где все Pi (i=)= const

будем искать частное решение y=ekx , к – неизвестная постоянная

y’=kekx

y’’=k2ekx

……

y(n)=k(n) ekx

k(n) ekx + P1k(n-1) ekx + … + Pnekx = ekx(k(n) + P1k(n-1) + … + Pn) = 0

ekx0 => k(n) + P1k(n-1) + … + Pn = 0, (1)

y=ekx - решение ДУ

(1) – характеристическое уравнение для ЛОДу с постоянными коэффициентами, выражения слева характеристический многочлен.

Решением характеристич уравнения (1) дает систему частных решений ЛОДу, структура ФСР зависит от вида корней характер уравнения.

(1) – алгебраическое уравнение n-ой степени, может иметь не более, чем n корней, обознач-м эти корни характеристического уравнения через k1 ,k2 …kn 

Возможны случай

1)все корни хар-го уранения вещественны и различны

2)все корни различны, но среди них есть комплексные

3)среди действительных корней имеются кратные

4)среди комплексных корней есть кратные

Общий алгоритм решения ЛОДу с постоянным коэффициентом

1) составим характер уравнение : y=ekx , k(n) + P1k(n-1) + … + Pn = 0

2) найти корни характер уравнения k1 ,k2 …kn 

3) по характеру корней находим частное линейно-независимое решение по таблице 1

4) подставляем частное решение  на основе Теоремы о структуре общего решения ЛОДУ и получаем общее решение y =

Вид корня

Соответственное решение

1

Действ корень кратности 1

ekx

2

Пара корней abi;кратнос 1

eаxcosbx , eаxsinbx

3

Действит корень кратност α

ekx, хekx, х2ekx, х3ekx,…, хα-1ekx

4

Пара сопряж корней α abi

eаxcosbx , eаxsinbx

хeаxcosbx , хeаxsinbx

х2eаxcosbx , х2eаxsinbx

хα-1eаxcosbx , хα-1eаxsinbx

Точка a называется точкой разрыва функции f(x), если эта функция не является непрерывной в данной точке. Записав отрицание определения непрерывной функции, получим определение точки разрыва: Определение 25 (точки разрыва). a - точка разрыва f, если >0 ()>0  x E : |x-a|< |f(x)-f(a)|>.

Перечислим основные глобальные свойства непрерывных функций. Теорема 10 (глобальные свойства непрерывных функций).

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ 1. Основные задачи. Физические задачи, приводящие к дифференциальным уравнениям в частных производных. Колебательные процессы, теплопроводность и диффузия, стационарные процессы. Электромагнитное поле, уравнения Максвелла. Классификация линейных уравнений в частных производных второго порядка и приведение их к каноническому виду. Характеристическое уравнение. Постановка основных задач: задача Коши, краевые задачи, смешанные задачи, корректность постановки задач.
Рекомендации по выбору аксонометрических проекций Рекомендации по выбору аксонометрических проекций Тройной интеграл вычислить